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Abstract

This paper proposes comparison and visualization tech-
niques to carry out parameter studies for the special ap-
plication area of dimensional measurement using 3D
X-ray computed tomography (ICT). A dataset series is
generated by scanning a specimen multiple times by
varying parameters of an industrial CT device. A high
resolution series is explored using our multi-planar re-
formating (MPR) based exploration system. We present
an evaluation system (multi-image view) and an edge
explorer for comparison and visualization of grey values
and edges of several datasets simultaneously. Visualiza-
tion results and quantitative data are displayed side by
side. For fast data retrieval and convenient usability we
use bricking of the datasets, and efficient data structures.
Graphics hardware is used for interactive visualization.
We studied the applicability of our proposed visualiza-
tion techniques in collaboration with our company part-
ners.

Categories and Subject Descriptors (according to ACM
CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1 Introduction

Industrial 3D X-ray Computed Tomography (ICT)
is widely used in industry for nondestructive test-
ing (NDT) and first part inspection, especially in the au-
tomotive, aeronautic, electronic, and leisure industry, as
well as many other industrial fields. Quality-control en-
gineers compare the volumetric datasets scanned using
an ICT with the design specifications of the industrial
components. This helps them to evaluate the precision
and accuracy of the production pipeline. The resolution
of the volumetric dataset directly effects the precision of
the first part inspection.

A wide variety of Computed Tomography (CT) scan-
ners have been introduced since the first CT ma-
chine was produced in 1972. Microtomography (Mi-
croCT) [ED82] and Nanotomography (NanoCT) were
produced in 1982 and 2005 respectively. The basic prin-
ciple of data acquisition in MicroCT and NanoCT is the
same as in early CT machines. The main difference is
the size of the focal spot in the CT source. The size of
the focal spot is in micrometers and nanometers in Mi-
croCT and NanoCT respectively. A micro or nano focal
spot results in higher resolution volumetric datasets. On
the other hand a high energy macro-focus X-ray source
better captures the structure of the specimen.

Lately, dual energy CT devices have been introduced to
combine the advantages of high energy and low energy
X-ray sources. A high energy and a low energy dataset
are produced by a dual energy CT machine. The two
datasets are later fused together in software. The voxels
are typically stored with either 16 bit or 32 bit precision
in an ICT dataset. Contemporary volumetric datasets
have a high resolution and are quite large in size (ta-
ble 1).

ICT machines provide various parameters that can be
manipulated and set by the user before performing a
CT scan. Some parameters severely influence the qual-
ity of a volumetric dataset depending on the material
and geometry of the specimen. Some of the parameters
that can be manipulated are voltage, current, number of
projections, width and alloy of the X-ray filtering plates
etc.

Unfortunately the parameters cannot be changed in real-
time with live feedback from the ICT. A typical 3D scan
takes approximately 30 to 45 minutes. Also the varia-
tions in the volumetric datasets, induced by changes in
the parameter settings are hard to locate in 3D datasets.
It is highly interesting for the ICT users to study the
change in the volumetric datasets due to the parame-
ter variations. The study helps to predict the parame-
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Table 1: Dataset series. Each parameter produces a se-
ries.

parameter DS1resolution no. of DS size voxel size
voltage 1000x1000x882 5 8.21GB 122 μm

no. of projections 1000x1000x882 6 9.86GB 136 μm
current 856x856x882 6 7.22GB 122 μm

integration time 800x800x882 5 5.26GB 136 μm
filter plates 848x848x882 15 17.72GB 122 μm

mean value dataset 1000x1000x882 3 4.93GB 136 μm

ters that will introduce the least amount of artifacts in
the volumetric dataset of a given specimen. We present
an innovative visualization system in our paper for the
study of ICT parameters.

We visualize the ICT scan series in collaboration with
our company partners. A dual energy source HWM
Rayscan 250XE (voxel size: 5 microns, 225keV and
450keV micro focus tube) and a Phoenix: x-ray nan-
otom (voxel size: 0.5 microns, micro focus tube:
180keV) devices are used to generate CT datasets. A
dataset series is produced by varying a single parameter
over the entire parameter range. Table 1 gives informa-
tion on the various dataset series that were used to test
and evaluate our techniques. All the datasets in a series
were generated in a row without removing the specimen
from the ICT device.

Some of the parameters in table1 have a known behav-
ior. For example voltage can induce cupping at high
penetration lengths due to beam hardening. A small
number of projections in a single 360 degree turn of
the rotary plate can result in visible streaking artifacts.
The number of projections is directly proportional to
the scanning time. A mean value dataset is produced
by measuring each projection image multiple times and
evaluating a mean image. Mean value measurement is
supposed to better estimate the grey values but it in-
creases the time and cost of each scan.

There are many public domain tools available like
VGStudio MAX [VG04] for the exploration of a CT
dataset. The design of such tools is mostly based on
multi-planar reformating (MPR) rather than 3D visual-
ization techniques. The choice of MPR over 3D visual-
ization is based on some valid reasons described below.
We are not aware of any software that allows a simulta-
neous exploration and comparison of dataset series.

The huge amount of data produced from an ICT makes
it hard to provide interactive comparison and 3D visual-
ization of the volumetric datasets. The amount of main
memory in the latest computer systems has increased
considerably but the memory in the graphics hardware
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remains the bottleneck. Graphics hardware is crucial for
interactive rendering of volumetric datasets. We have a
varying number of 3D datasets for every parameter and
the amount of data that needs to be processed is rather
large (table 1). Efficient management of the data and in-
teractive rendering is possible through MPR (section 4).

3D visualization also has occlusion and shading issues.
Shading typically alters the visibility of grey values ac-
cording to the light in the scene. This is not the ideal
case given the fact that we are interested in detecting
variations of grey values with changes in the parame-
ter settings. Also, 3D visualization does not provide as
much detail as we can extract using MPR. The use of
3D visualization therefore negates the advantage gained
through the use of latest MicroCT and NanoCT ma-
chines. MPR on the other hand can provide interactive
exploration, comparison, and visualization of very large
dataset series.

Our system is therefore based on MPR. We provide a
multi-image view for simultaneous viewing and com-
parison of dataset series. The edge explorer provides
comparative visualization of edges in a dataset series.
We use efficient algorithms and data structures for fast
retrieval of data from the main storage device.

2 Related Work

The simultaneous visualization of multiple datasets is
mostly used in medical imaging. Datasets from different
modalities are first registered and then visualized by the
radiologists for diagnosis. Wilson et al. [WBO97] pro-
pose to use a different rendering style for each modality.
The aim of multi-modal visualization is to render dif-
ferent parts of a volume using the modality which best
captures the respective object part.

Some general techniques, which are not specific to med-
ical imaging, have been proposed for rendering multi di-
mensional datasets [SJH08]. Ebert et al. [ERS∗00] use
innovative blobby objects for simultaneous rendering of
multiple parameters. Each blobby object has as many
bulges on its surface as the number of parameters or
dimensions to visualize. The bulges point in different
directions and this might impact comparison of param-
eters for the viewer. Also, the blobby objects are 3D
and therefore the technique is prone to occlusion issues.
Taylor [Tay02] uses color coding and orientation of sim-
ple shapes to visualize multiple datasets on a single sur-
face.

Interactive rendering of multiple volumes is challeng-
ing. The amount of memory available in graphics
hardware is limited. Time-space partitioning (TSP)
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trees [SCM99] is an efficient data structure used for
storage and rendering of time varying datasets. Fout et
al. [FMA05] propose compression of the multi variate
datasets. The technique assumes a certain correlation
between variables. Grimm et al. [GBKG04] propose
bricking and an efficient addressing scheme for large
datasets that do not fit into the main memory. Kohlmann
et al. [KBKG07] describe a bricked volume layout for
MPR based exploration of medical datasets. The work
is based on the results achieved by Grimm et al. and
produces interactive MPR for large datasets.

As our work is based on MPR, research on image com-
parison is interesting for us. Gesú and Starovoitov pro-
pose a distance function for comparing images [GS99].
The difference between images is computed as a single
number. Yang et al. [YLC07] use the Hausdorff dis-
tance and the normalized gradient to evaluate the simi-
larity between images. A survey of image comparison
metrics is provided by Zhou et al. [ZCW02]. Image
comparison research has mainly focused on producing
a similarity metric for images without focusing on visu-
alization techniques. We propose a method to compare
and visualize the differences between multiple slices or
images. We show our experimental results using ICT
datasets but our techniques are general enough to be
used in other image-comparison scenarios.

3 Comparative Visualization of
Multiple Datasets

We introduce two novel visualization techniques,
namely multi-image view and edge explorer. Further-
more, a variety of tools are proposed for user interac-
tion. Quantitative data about slices and their comparison
is displayed along with the rendered images.

The natural choice for comparing two slices or images
will be to either display them side by side or to display
them in a single checkerboard display. The checker-
board display has been previously used for multi-modal
datasets. For example Stokking et al. [SZV03] display
single photon emission computed tomography (SPECT)
and magnetic resonance (MR) images in a checkerboard
arrangement. The checkerboard is used to simulate the
transparency effect and also to verify registration (fig-
ure 1).

We have an unknown number of datasets to compare and
visualize. The checkerboard display handles just two
datasets and is therefore unsuitable for our purposes.
For the evaluation of a dataset series, a representation
is needed which is able to handle multiple datasets. In
the multi-image view we divide our viewport into circles

rather than squares. A circle can be easily divided into
multiple, equally sized sectors with each sector repre-
senting a dataset. The circles however are not space fill-
ing. A good approximation to a circle, which also tiles
the viewport is a hexagon. So we divide our screen into
tightly packed hexagons, where the user can control the
size and location of the hexagons.

Each hexagon has a circle in the middle and is divided
into multiple sectors as shown in figure 2. Datasets from
a series are displayed in each sector of the hexagon and
in the central circle. The dataset which is displayed in
the circle is called central dataset. All other datasets
are compared and visualized with respect to the cen-
tral dataset. Every hexagon provides a concurrent view
into multiple datasets. We name our custom designed
hexagon as base tile. The tiling of the viewport is called
multi-image view.

3.1 Multi-image View

Multi-image view is divided into a grid of base tiles. The
size of a base tile is controlled by the user. The first
dataset in the series is used as the central dataset. The
rest of the datasets are initially assigned sectors of the
hexagon in a clockwise direction. The central dataset
always displays the grey values. The user can choose the
display mode for the datasets in the sectors of a base tile.
The grey values or the difference values to the central
dataset are the available options. Difference is evaluated
by computing the difference between the grey values of
the central dataset and the datasets in each sector. The
result is color coded according to a user provided color
scale. A honeycomb frame for visual distinction can be
rendered over the result. The transparency and width of
the honeycomb is user controlled.

Figure 1: SPECT and MR slices displayed in a checker-
board pattern [SZV03].
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(a) (b)

(c) (d)

Figure 3: (a-b) multi-image view of the voltage data-series. Our system uses normalized grey values. The color
scale is in the range of -1 to 1.(c) central dataset changed. (d) central dataset changed and fused dataset removed
from the evaluation process.
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Figure 2: Base tile for multi-image view.

Several interaction tools are provided for effective com-
parison and live feedback. For example the placement
of the datasets in a base tile is crucial for the visual-
ization. The user can rearrange the sectors in which
datasets are displayed by a simple drag and drop opera-
tion. The central dataset can also be interactively cho-
sen and changed by the user. Any dataset, which is not
interesting for analysis or has been shown as an outlier
can be removed from the process. The number of sec-
tors in all the base tiles will be reduced and rearranged
by the system accordingly. The base file can be moved
freely over the viewport with live update of the images.

We also use low-level fusion-techniques like a multi-
scan fusion algorithm [HKMG08] to generate a fused
dataset from a dataset series. The fused dataset can then
be used as a central dataset. Figures 3(a-d) show a volt-
age dataset series. There are four datasets in the volt-
age series (150 kV, 180 kV, 210 kV and 220 kV), each
recorded with 16 bits per voxel. We also generate a
fused dataset from the given series. Figure 3(a) shows a
rendering of the grey values in a multi-image view. The
fused dataset is the central dataset. We see a clear pat-
tern emerging in the left half of the image. The response
of the X-rays decreases with an increase in voltage. The
low-voltage dataset is better suited to capture edges in
the test part.

The comparison of the slices is easier if we display dif-
ference data (figure 3(b)). For visual distinction the
base file border is also rendered and the color scale is
shown in the image. We observe that the difference be-
tween datasets is well pronounced in base tiles which
are in the left half of the image and at the outer edges
of the dataset. The dataset with 150 kV performs bet-
ter (bright red sectors of the base tiles) while the result
is almost the same for datasets measured using 210 kV
and 220 kV (blue sectors). The fused dataset looks sim-
ilar to the dataset recorded with 180 kV (green sectors).
Our system reported the mean and the maximum differ-
ence between the fused and the 180 kV dataset as 238

and 1948. The grey values range from 0 to 65535 in the
voltage series.

The difference between datasets diminishes in the right
half of the image in figure 3(b). A low voltage X-
ray source produces almost the same measurement as
a high voltage source. We examine the base tiles in
figure 3(b) which are in the area highlighted by yellow
ovals in figure 3(a). The difference between the datasets
has reduced considerably and we observe a lot of green
color coding. This is due to beam hardening artifacts.
Beam hardening occurs along high penetration lengths
along the X-ray direction. The X-ray source was rotated
around the specimen in the direction shown by a green
curve in figure 3(a). So the X-rays were subjected to
greater beam hardening in the right half of the shown
images.

Beam hardening also modified the grey values of the air
in the sections of the drill holes of our test part. The grey
value of air is almost constant in all of the datasets in
the region highlighted by a blue rectangle in figure 3(a).
The red rectangle shows an area occupied by air but
affected by beam hardening. The difference between
metal and air is not recognizable anymore (figure 3(a)
and (b)).

The datasets measured with 210 kV and 220 kV seem
to produce almost the same result. We can compare
these datasets by making one of these datasets the cen-
tral dataset. We drag the 210 kV dataset into the cen-
tral dataset location (figure 3(c)). Although the differ-
ences between these two datasets are very small, still the
220 kV dataset produces slightly lower grey values (sec-
tor with blue and green color). The mean and maximum
difference between their grey values is 522 and 2891 re-
spectively. The standard deviation of the difference is
1.09.

In figure 3(d) we choose the 150 kV dataset as the cen-
tral dataset and remove the fused dataset from the evalu-
ation process. The number of sectors in the base tile are
changed from four to three. We can see areas where the
150 kV dataset has greater contrast between metal and
air (blue region) and regions where there is not much
difference (green).

The grid of base tiles can be interactively switched to
a single base tile. This corresponds to a single multi-
faceted magic lens. The user can control the size and
location of the base tile and thus can probe the specific
regions of the dataset. This is particularly helpful for
comparative visualization of areas severely affected by
artifacts. We can determine the parameter setting which
is most robust against the artifacts. Also the quantitative
data is only displayed for the user selected area (base
tile). Our system not only displays quantitative data of
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(a)

(b)

Figure 4: (a) slice position shown as a black line on the
DVR of the test part (left) and multi-image view (right).
(b) multi-image view with base tile sectors exchanged.

the current base tile but also of the last two user selected
base tiles. Again, the display of history is useful for
evaluation of artifacts.

Figure 4 shows the integration-time dataset series ren-
dered with a single base tile. There are five datasets in
the series with integration times of 500 ms, 1000 ms,
2000 ms, 4000 ms, and 8000 ms per projection image.
The slice location is shown as a black line on the DVR of
the test part in figure 4(a) left. We see grey value differ-
ences at the edges in the sectors containing the 4000 ms
and 8000 ms datasets.

In figure 4(b) the sectors for the 1000 ms and 8000 ms
datasets, and the 2000 ms and 4000 ms datasets are ex-
changed. The grey value differences at the edges are
not present in the datasets with 1000 ms and 2000 ms

integration times. Only edges show a change in grey
values with an increase of integration time, particularly
between 2000 ms and 4000 ms integration time. There
is no considerable visual difference when the integra-
tion time is increased from 500 ms to 2000 ms or from
4000 ms to 8000 ms.

Comparative visualization can be difficult to interpret
when the central dataset has a high variation in grey
values or has a lot of salt and pepper noise. This is ap-
parent when evaluating the dataset series with a varying
number of projections. If the number of projections is
small, the volumetric dataset computed from these pro-
jections has streaking artifacts (figure 5(a)). The slice
position is shown in the upper left corner of the image.
Figure 5(b) shows a multi-image view where the dataset
with 90 projections is set as the central dataset. We ob-
serve high variations and patterns. Blue and red colors
build patterns in all the sectors of the base tiles. It is
important to determine if it is because of salt and pepper
noise in the datasets or due to a wrong selection of the
central dataset.

We use a simple method to quickly determine the ho-
mogeneity of the slices and visualize it using a multi-
image view. For homogeneity rendering we render a
pixel based on the following conditions: If the grey
value of a pixel is the same as in the 8-neighborhood,
the pixel is rendered green. If a pixel and its neighbors
in the 4-neighborhood have the same grey value, it is
colored yellow. Otherwise the pixel is colored red. This
provides a quick overview of the amount of deviation in
the grey values in a slice. Homogeneity rendering (fig-
ure 5(c)) shows the central dataset (90 projections) to be
most in-homogeneous. Therefore the dataset with 1440
projections is dragged to the central circle (figure 6). We
conclude that the streaking artifacts are greatly reduced
when the number of projections is increased from 90 to
270. A further increase in the number of projections
does not have a big impact on the dataset quality.

3.2 Edge Explorer

Edge detection is an important subject in 3D ICT. Edge
detection is useful for segmentation, feature detection,
feature selection, etc. Edges are blurred in a 3D scan due
to various artifacts like beam hardening, streaking, etc.
In figure 3(b) the edge between metal and air is hardly
perceivable in artifact affected regions. State-of-the-art
edge detection algorithms fail to detect the edge either.
We observed in figure 4(a) and (b) that various datasets
of a series have different grey values at the edges.

Our company partners consider edges as a strong indi-
cation of scan quality. The edge explorer is designed to
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(a) (b) (c)

Figure 5: The no of projections dataset series has six datasets with 90, 270, 360, 720, 990 and 1440 projections for
a single 360 degree turn of the rotary plate. (a) slice from the dataset with 90 projections. (b) multi-image view.
(c) homogeneity rendering.

provide an overview about the edges in a set of slices
or images. It also guides the user to problematic areas
where edges are detected in one dataset but not in an-
other one.

The edge explorer uses either the Sobel edge de-
tection algorithm or the Canny edge detection algo-
rithm [Can86]. The choice is based on user preference.
The Sobel edge detector is faster than the Canny edge
detector. It also requires the manipulation of a single
threshold for edge detection whereas the Canny edge de-
tector has two thresholds. Nevertheless the Canny edge
detector provided better results in all our experiments.
The result of an edge detection algorithm is a binary im-
age.

Edge detection is performed on a slice of the central
dataset and the result is displayed on the screen (fig-
ure 7(a)). Edge detection is also performed on the other
datasets in a series and the result is stored for further
processing. As we have edge information from all the
datasets we can easily test if an edge is present or not in
all the datasets at a particular position in an image.

We also have two graphs with blue background in fig-
ure 7(a). A vertical graph has yellow bars and is dis-
played on the right of the image. The horizontal graph
is plotted above the image and has green bars. We scan
the rows of the slices between the two vertical yellow
lines on the image and count the number of locations
where an edge is present in one of the datasets but is not
present in any one of the rest of the datasets. The num-
ber of locations found in a row are shown on the vertical
graph as a bar. Similarly we scan the columns between

the horizontal green lines and plot the result on the hor-
izontal graph. Both graphs can be scaled separately.

The vertical and horizontal lines can be moved by the
user with live update of the graphs. The combined in-
formation of the two graphs helps the user to find areas
where edges are missing. In figure 7(a), two long bars
on the vertical graph (highlighted by a dark blue oval)
show an area where edges are missing in some of the
datasets. The information from the horizontal graph (red
oval) can be used to further localize the problematic area
on the slice.

We also have a zoom-in tool in our edge explorer. The
user selects the location on the image for zoom-in. The
normal of an edge at that location (if an edge is present)
or the gradient of the grey values is used to automati-
cally select the dimensions of the zoom-in rectangle. If
the gradient direction is close to the horizontal axis, the
zoom-in rectangle has a bigger height (long rectangle).
If the direction is close to the vertical axis, the rectangle
has a bigger width (flat rectangle). Otherwise a square
is chosen as a zoom-in region. More shapes can easily
be added to the zoom-in tool based on gradient direc-
tion. Figure 7(b) shows a zoom-in using a long rectan-
gle. The zoom-in shows each dataset of a series in a
separate window. The edge strength in the zoom-in re-
gion is color coded according to the scale shown in the
image. The edge in the 150 kV dataset is the most well
pronounced.
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4 Implementation and Results

We implemented a prototype on a Pentium 4 3.4 GHz
CPU and an NVidia GeForce 8800 graphics board.
We have very large datasets to visualize (table 1).
In a pre-processing step bricks are created from the
dataset series. Each element of a brick is a list con-
taining a grey value from each dataset of the series.
Brick fetching is fastest when the brick size is about
64 KBytes [GBKG04]. The pre-processing step dynam-
ically chooses such brick dimensions that the brick size
is close to 64 KBytes. We only fetch those bricks into
memory that are required for rendering.

To speed up the overall performance of the application
we also implement pre-fetching of the bricks. We have
three threads in our application. The first thread runs in
the background and loads those bricks into main mem-
ory that may be needed in the near future. Based on
the orientation of the slice and the direction of navi-
gation, we can calculate the next set of bricks proba-
bly needed. The second thread which has the highest
priority is responsible for fetching those bricks that are
needed for rendering the current multi-image view. The
second thread will only be executed when the currently
required set of bricks has not already been fetched into
memory. The third thread performs rendering of images
and handles user interaction with the system.

Based on the available memory in the system we keep
four sets of bricks in memory. These sets of bricks
in the order of importance are: first; the set required
for rendering the current multi-image view, second; the
next set of bricks required in the future, third; the set of
bricks most recently used, and fourth; the set after the
next set of bricks. The performance of our system is
given in table 2. The time shown includes fetching the
data from main storage and rendering. We observe ap-
proximately a 26% performance drop for the axial case
because of bricking. We gained about 61% and 21%
rendering speed-up by bricking in the sagittal and the
coronal cases respectively. The loss in performance in
the axial case is due to the alignment of the monolithic
volume with the slicer.

Table 2: Performance: Average time (in milliseconds)
required for rendering a grey value slice using a mono-
lithic volume, bricked volume, rendering a multi-image
view and rendering an edge explorer view.

monolithic bricked multi-image view edge explorer
Axial 19 24 26 29

Sagittal 90 35 38 44
Coronal 35 28 31 36

Our tool was evaluated by two domain specialists. The
first professional is involved in the simulation of X-rays
and the second works in post-processing of dual energy
CT datasets. The second specialist is also a co-author
of the paper. Both of them found our techniques very
helpful for their work. The first professional found the
multi-image view particularly helpful. He performed de-
tailed low level analysis with our methods to evaluate his
simulation results. They earlier used VGStudio MAX,
Matlab, etc for comparison and it took them about three
hours to analyze a set of ICT datasets. They predict
the need of a more intensified comparison of multiple
datasets in their future work. They plan to exploit the
proposed techniques to test fusion algorithms, to evalu-
ate ICT simulations, to visualize the influence of differ-
ent X-ray energies in multi-energy ICT, etc.

We are not aware of any software that allows compar-
ative visualization of multiple datasets. Multiple tools
are needed for a single comparison. We used VGStu-
dio MAX, Matlab and Adobe Photoshop to compare
datasets and recorded the necessary time (table 3). Most
contemporary MPR tools only allow exploration of a
single 3D dataset at a time. We have to load each dataset
of a series separately in VGStudio MAX and generate a
slice image. Once we have all the slices from the dataset
series, we compare them using Adobe Photoshop and by
writing code in Matlab.

Table 3: Time required to setup an environment to com-
pare a single set of slices.

Time spent on Time spent on slice Our
ICT scan extraction and comparison techniques

Voltage-series 120 min 60 min interactive
Projections-series 240 min 72 min interactive

5 Conclusion

We have presented a visualization system for compar-
ative studies of multiple images. We use bricking for
efficient memory management and threading for pre-
fetching of the bricks. We take advantage of the graph-
ics hardware to achieve maximum rendering speed up.
We present multi-image view for comparative visualiza-
tion of multiple datasets. It helps the user track artifacts
and also provide interaction tools to find datasets that
have better contrast or stronger edges, etc. The edge ex-
plorer is specifically designed for visualizing edges in
multiple datasets. The system is evaluated by domain
specialists for ICT dataset series. Our techniques are
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generic and applicable for sets of images produced by
various other imaging devices.
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Figure 6: Multi-image view for number of projections
series.
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Figure 7: (a) edge explorer. (b) zoom-in tool.


